
AD-A235 642

t-; - Software Engineering Institute

Software Requirements

Curriculum Module SEI-CM-19-1.2

DTIC
D, Tf I. C,.

0.

/

I,/

//

0 e
91-00327

' ;I I l 'l ' ,,,, ! 2 g061

Software Requirements

SEI Curriculum Module SEI-CM-19-1.2

January 1990

r L)

John W. Brackett .
Boston University - .

- Carnegie Mellon University
Software Engineering Institute

This work was sponsored by the U.S. Department of Defense.
Approved for public release. Distribution unlimited.

This document was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this document should not be construed as an
official DoD position. It is published in the interest of scientific and
technical information exchange.

Review and Approval

This document has been reviewed and is approved for publication.

FOR THE COMMANDER

(HoN S. HERMAN, Capt, USAF
'SEI Joint Program Office

This work iz sponsored by the U.S. Department of Defense.

Copyright © 1990 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides acess to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agicwy personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Co ieS of this document are also available through the National Technical Information Service. For information on

enng, please contact NTIS directly: National Technical Information Service, US. Department of Commerce, W
Springfield, VA 22161.
Use of any trademarks in this document is not intended in any way to infringe on the rights of the trademark holder.

Software Requirements

Acknowledgements Contents

Dieter Rombach, of the University of Maryland, played an Capsule Description I
inva!uable role in helping me organize this curriculum Philosophy 1

module. He reviewed many drafts. Lionel Deimel, of the

SEI, was of great assistance in clarifying my initial drafts. Objectives 4

Douglas T. Ross, one of the true pioneers in software Prerequisite Knowledge 4
engineering, taught me much of what I know about soft- Module Content 5
ware requirements definition. Outline5

Annotated Outline 5

Teaching Considerations 15

Suggested Course Types 15
Teaching Experience 15

Suggested Reading Lists 15

Bibliography 17

SEI-CM-19-1.2 iii

Software Requirements

Module Revision History

Version 1.2 (January 1990) Minor revisions and corrections
Version 1.1 (December 1989) Revised and expanded bibliography; othcr minor changes

Approved for publication
Version 1.0 (December 1988) Draft for public review

iv SEI-CM-1 9-1.2

Software Requirements

Capsule Description pendent of the specific techniques used. The mate-
rial presented here should be considered prerequisite

This curriculum module is concerned with the defi- t6 tne study of specific requirements methodologies
nition of software requirements-the software engi- and representation techniques.
neering process of determining what is to be pro- Software Requirements has been developed in con-
duced-and the products generated in that defini- junction with Software Specification. A Framework
non. The process involves all of the following: [Rombach90] and uses the conceptual framework

" requirements identification and terminology presented in that module. This ter-

" requirements analysis minology is summarized in Figure 1. Both modules
identify two products of the softwaie requirements

" requirements representation process: customer/user-oriented software require-
"requirements communication ments ("C-requirements") and developer -oriented
* development of acceptance criteria and software requirements ("D-requirements"). The

procedures principal objective of these documents is the
e oachievement of agreement on what is to be pro-

The outcome of requirements definition is a precur- duced. Their form, however, is largely determined
sor of software design, by the communication needs of the diverse partic-

ipants in the requirements process. The develop-
ment of the D-requirements refines and augments
the C-requirements, in order to provide the informa-

Philosophy tion required to support software design and subse-
quent validation of the developed software against

The subject of software requirements is often given the requirements.
far less attention in software engineering education Because of the dependence of this module on
than software design, even though is importance is Software Specificaton: A Framework, that curricu-
widely recognized. For example, Brooks [Brooks87] lum module should be read before studying this one.
has written:

The hardest single part of building a software This module reflects two strong opinions of the au-
system is deciding precisely what to build. No thor:
other part of the conceptual work is as difficult 9 The software requirements definition
as establishing the detailed technical require- process is highly dependent upon the
ments, including all the interfaces to people, to previous steps in the system .develop-
machines, and to other software systems. No ment process.
part of the work so cripples the resulting system
if done wrong. No other part is more difficult * The prime objective of the requirements
to rectify later. definition process is to achieve agree-

ment on what is to be produced.
The purpose of this module is to provide a compre-

hensive view of the field of software requirements in Where the overall system requirements have been
order that the subject area can be more widely determined .And the decision has been made that cer-. taught. The module provides the material needed to tain sy tpn functions are to be performed by soft-
understand the requirements definition process and ware, the software requirements process is highly
the products produced by it. It emphasizes what constrained by previous systems engineering work.
must be done during requirements definition, inde- In this situation, requirements aie obtained largely

SEI-CM-1 9-1.2 1

Software Requirements

Existing Terminology
Life-cycle Used in this Module

Terminology

Market Analysis Context Analysis
Systems Analysis
Business Planning
Systems Engineering

Market Needs Needs Product
Software Needs Business Needs

Demands
System Requirements

Requirements Analysis C(ustomer/User-oriented)-
Requirements Definition Requirements Process
System Specification

Requirements C - Requirements Product
Customer/User Requirements Definition

Oriented Software Requirements Document
Requirements Requirements Specification

Functional Specification

Specification D(eveloper-oriented)-
Requirements Process

Behavioral Specification D - Requirements Product
Developer Syscem Specification

Oriented Software Functional Specification
Requirements Specification Document

Requirr. nents Specification

Design Design Process

_ 1
[LEGEND

Processes Products

Figure 1. Life-cycle terminology used in this module.

2 SEI-CM-1 9-1.2

Software Requirements

Unconstrained
Decision

0 Support
System

Corporate
• Accounting

System

Environment Manufacturers
for the * Operating
Software System
Requirements Enhancements to
Definition 0 Corporate Accounting
Process System

Airliner Flight
0 Control

System

Missile
• Guidance

Highly System
Constrained

% of Requirements Gathered from People

Figure 2. Sources of requirements.

by analyzing documents. (A typical example is the Requirements products have three, sometimes com-
requirements definition for software to control a spe- peting, objectives:
cific hardware device.) 1. To achieve agreement regarding the re-

Where there are few constraints imposed by the en- quirements between system developers,
vironment in which the software will operate and customers, and end-users.
there may be many opinions on desired software 2. To provide the basis for software design.
functionality, requirements definition primarily in- 3. To support verification and validation.
volves eliciting requirements from people. (A typi- During C-requirements development, the first objec-
cal example is the requirements definition needed to
build decision support software for use by a group of toe is paramount. Later in the life cycle, the other
.managers.) two objectives increase in importance.

Figure 2 suggests how the fraction of requirements
elicited from people increases as constraints on the
software requirements process decrease.

The fact that the prime objective of the requirements
definition process is to achieve agreement on what is
to be produced makes it mandatory that the productsO1 of the process serve to communicate effectively with
the diverse participants.

SEI-CM-19-1.2 3

Software Requirements

Objectives

The following is a list of possible objectives for in-
struction based upon this module. The objectives for
any particular unit of instruction may include all of
these or consist of some subset of this list, depend-
ing upon the nature of the unit and the backgrounds
of the students.

Comprehension
* The student will be able to describe the

products produced by requirements defi-
nition, the type of information each
should contain, and the process used to
produce the products.

Synthesis
" The student will be able to develop a

plan for conducting a requirements defi-
nition project requiring a small team of
analysts.

" The student will be able to perform re-
quirements definition as part of a team
working with a small group of end-users.

Evaluation
* The student will be able to evaluate criti-

cally the completeness and utility, for a
particular audience, of requirements doc-
uments upon which software design is to
be based.

Prerequisite Knowledge

Familiarity with the terms and concepts of the soft-
ware engineering life cycle.

0

4 SEI-CM-1 9-1.2

Software Requirements

Module Content

Outline c. Key contents
4. Developer-oriented software requirements

I. Introduction to Software Requirements a. Objectives
1. What are requirements? b. Relative importance of specification
2. The requirements definition process attributes
3. Process participants and their roles c. Key contents
4. The products of requirements definition IV. Techniques and Tools for Performing Software

II. The Software Requirements Definition Process Requirements Definition

1. Requirements identification 1. Techniques for eliciting requirements from

a. Software needs as input to requirements people

definition 2. Modeling techniques

b. Elicitation from people 3. Representative requirements definition methods

c. Deriving softwa. -. requirements from system a. Structured Analysis and SADT
requirements b. DSSD

d. Task analysis to develop user interface c. SREM/DCDS
requirements d. NRL/SCR

2. Identification of software development 4. Computer support tools for model development
constraints a. Method-specific tools

3. Requirements analysis b. Non-method-specific tools
a. Assessment of potential problems 5. Computer support tools for prototyping
b. Classification of requirements
c. Evaluation of feasibility and risks

4. Requirements representation
a. Use of models Annotated Outline
b. Roles for prototyping I. Introduction to Software Requirements

5. Requirements communication 1. What are requirements?
6. Preparation for validation of software

requirements There are many definitions of requirements, which
differ in their emphasis. The IEEE software engi-7. Managing the requirements definition process neering glossary [IEEE83] defines requirement as:

III. Software Requirements Products (1) A condition or capability needed by a user to
1. Results of requirements definition solve a problem or achieve an objective. (2) A

condition or capability that must be met or pos-
a. Functional requirements sessed by a system or system component to sat-
b. Non-functional requirements isfy a contract, standard, specification, or other

formally imposed document. The set of all re-
c. Inverse requirements (what the software shall quirements forms the basis for subsequent de-

not do) velopment of the system or system component.

d. Design and implementation constraints Abbott (Abbott86] defines requirement as:
2. Standards for requirements documents any function, constraint, or other property that

3. Customer/user-oriented software requirements must be provided, met, or satisfied to fill the
needs of the system's intended user(s).

For projects in which the software development is
b. Relative importance of specification highly constrained by prior system engineering

attributes work, the second IEEE definition is most applicable.

SEI-CM-19-1.2 5

Software Requirements

In less constrained environments, the first IEEE de- engineers, who evolve the C-requirements product
finition or Abbott's definition is appropriate, into the D-requirements product; managers; and ver-

Requirements cover not only the desired function- ification and validation (V&V) personnel.

ality of a system or software product, but also ad- Requirements analysts act as catalysts in identifying
dress non-functional issues (e.g., performance, inter- requirements from the information gathered from
face, and reliability requirements), constraints on the many sources, in structuring the information (per-
design (e.g., operating in conjunction with existing haps by building models), and in communicating
hardware or software), and constraints on the imple- draft requirements to different audiences. Since
mentation (e.g., cost, must be programmed in Ada). there is a variety of participants involved in the re-
The process of determining requirements for a sys- quirements definition process, requirements must be
tem is referred to as requirements definition, presented in alternative, but consistent, forms that

are understandable to different audiences.
Our concern in this module is with software

requirements, those requirements specifically related 4. The products of requirements definition
to software systems or to the software components The outcome of requirements definition is the for-
of larger systems. Where software is a component Teotoeo eurmnsdfnto stefrof another system, software requirements can be dis- mulation of functional requirements, non-functionalfinguished from the system requirements of tie rdquirements, and design and implementation con-larger artifact. straints. These requirements and constraints must berepresented in a manner fulfilling the information
Software Specification: A Framework [Rombach90] needs of different audiences.
describes several different software evolution (life-
cycle) models and notes that the commonalities The following are the prins:al objectives of re-
among these models are the types of products they quirements products:
eventually produce. The products shown in Figure 1 * To achieve agreement on the require-
are assumed to be produced on a project, irrespec- ments. Requirements definition, the proc-
tive of how the products get built. Although the ess culminating in the production of re-
requirements on a small project may be defined in- quirements products, is a communications-
formally and briefly, a definition of what the soft- intensive one that involves the iterative
ware development process will produce is required elicitation and refinement of information
in all life-cycle models. from a variety of sources, usually includ-

ing end-users with divergent perceptions
2. The requirements definition process of what is needed. Frequent review of the

The requirements definition process comprises these evolving requirements by persons with a
steps: variety of backgrounds is essential to the

" Requirements identification convergence of this iterative process. Re-
SRiidentification quirements documents must facilitate com-

" Identification of software development munication with end-users and customers,
constraints as well as with software designers and per-

* Requirements analysis sonnel who will test the software when de-

* Requirements representation veloped

" Requirements communication To provide a basis for software design.
Requirements documents must provide

" Preparation for validation of software re- precise input to software developers who
quirements are not experts in the application domain.

However, the precision required for this
These steps, which are not necessarily performed in purpose is frequently at odds with the need
a strictly sequential fashion, are described and dis- for requirements documents to facilitate
cussed in Section II. communication with other people.

3. Process participants and their roles * To provide a reference point for soft-
ware validation. Requirements docu-

[Rombach90] describes classes of project partici- ments are used to perform software valida-
pants and their responsibilities. Rombach distin- tion, i.e., to determine if the developed
guishes between customers, who contract for the software satisfies the requirements from
software project, and end-users, who will install, which it was developed. Requirements
operate, use, and maintain the system incorporating must be stated in measurable form, so

the software. Customers are assumed to be respon- tests can be developed to show un-

sible for acceptance of the software. Other par- ambiguously whether each requirement

ticipants he defines are: requirements analysts, who has been satisfied [Boehm84a].

develop the C-requirements product; specification

6 SEI-CM-1 9-1.2

Software Requirements

In formulating requirements, it is important for the e.g., where software is embedded in a larger
analyst to maintain his role as analyst and avoid be- hardware system (an embedded system), system-
coming a designer. Of two requirements purporting levei documentation frequently provides the con-
to represent the same need, the better one is that text for software requirements definition. This
which allows the designer greater latitude. This ad- documentation, which serves as software needs,
vice is difficult to heed, both because users and cus- typically covers system requirements, the alloca-
tomers often state particular design solutions as tion of system functions to software, and the de-
"needs" and because it is usually easier to postulate scription of interfaces between hardware and soft-
a solution in lieu of understanding what is relly ware.
needed by users or customers. The analyst's objec-
tive shou.J always be to maximize the options avail- When a software product is being developed for a
able to the designer. This objective can be well- heterogeneous audience (e.g., a database manager
illustrated by a simple example from another or a spreadsheet package), software needs will
domain. The statement "the customer requires an typically contain the results of a market analysis
automobile" provides the problem-solver with fewer and a list of important product features. Since
options than "the customer needs a means to get to information provided in software needs diff(.rs so
Cleveland." widely, requirements definition must usually in-

clude an understanding of the environment in
II. The Software Requirements Definition Process which the software will operate and how the soft-

The steps in software requirements definition and the ware will interact with that environment.

management of the process are discussed below. b. Elicitation from people

1. Requirements identificat;on An essential step in most requirements definition
projects is elicitation of requirements-related in-

Requirements identification is the step of require- formation from end-users, subject-matter experts,
ments definition during which software require- and customers. Elicitation is the process per-
ments are elicited from people or derived from sys- formed by analysts for gathering and understand-

tem requirements [Davis82, Martin88, Powers84]. fre yaayt o ahrn n nesad
An important precursor to requirements definition is ing information [Leite87]. Elicitation involves

the context analysis process, which precedes re- fact-finding, validating one's understanding of thei Otheconextanlyss poces, hih pecees e-information gathered, and communicating oe
quirements definition. (See Figure 1.) infor r e an open

issues for resolution.
a. Software needs as input to requirements Fact-finding uses mechanisms such as interviews,

definition questionnaires, and observation of the operational

Context analysis [Ross77b] documents why soft- environment of which the software will become a
ware is to be created and why certain technical, part.
operational, and economic feasibilities establish Validation involves creating a representation of
boundary conditions for the software develop- the elicitation results in a form that will focus
ment process. According to Ross, context anal- attention on open issues and that can be reviewed
ysis should answer the following questions: with those who provided information. Possible

* Why is the software to be created? representations include summary documents,
* What is the environment of the software usage scenarios, prototype software [Boehm84b],

to be created? and models.
* What are the technical, operational, and Some type of explicit approval to proceed with

economic boundary conditions that an requirements definition completes the elicitation
acceptable software implementation process. The audiences who must approve the
must satisfy? requirements should agree that all relevant infor-

Context analysis for software to be developed for mation sources have been contacted.
internal company use is frequently called business
planning or systems analysis. In any case, we c. Deriving software requirements from system
will refer to the product of context analysis as requirements
software needs. Requirements are created for embedded software

Software needs can take significantly different based upon the system requirements for the sys-
forms depending upon the context of system de- tem or system component in which the software is
velopment. In many situations, software needs embedded. Traceability techniques are dsed to
will be very informal and will provide little de- communicate how the software requirements re-

tailed information for beginning requirements de- late to the system requirements, since the cus-
finition. For a highly constrained environment, tomer is usually more familiar with the system

SEI-CM-1 9-1.2 7

Software Requirements

requirements. Because functions are allocated to It is frequently useful also to assess requirements
software and hardware before software require- regarding stability; a stable requirement addresses W
ments definition begins, most of the functions the a need that is not expected to change during the
software is to perform will not be derived through life of the software. Knowing th,t a requirement
requirements elicitation from end-users or cus- may change facilitates developing a software de-
tomers. sign that isolates the potential impact of the

d. Task analysis to develop user interface change.

requirements c. Evaluation of feasibility and risks

User Interface Development [Perlman88] de- Assessment of feasibility involves technical feasi-
scribes methods for user interface evaluation that bility (i.e, can the requirements be met with cur-
also apply to determining software requirements rent technology?), operational feasibility (i.e, can
concerned with human interaction. Analyzing the the software be used by the existing staff in its
tasks the user must perform should result in a de- planned environment?), and economic feasibility
tailed understanding of how a person is supposed (i.e., are the costs of system implementation and
to use the proposed software. use acceptable to the customer?) [Ross77b].

2. Jdentification of software development 4. Requirements representation
constraints Requirements representation is the step of require-

During this step, constraints on the software devel- ments definition during which the results of require-
opment process are identified. Typical constraints ments identification are portrayed. Requirements
include cost, the characteristics of the hardware to have traditionally been represented in a purely tex-
which the software must interface, existing software tual form. Increasingly, however, techniques such
with which the new software must operate, fault tol- as model building and piototyping, which demand
erance objectives, and portability requirements. more precision in their description, are being used.
Only software solutions satisfying the requirements
and implemented within the restrictions imposed by
the constraints are acceptable. Models are built during requirements definition to *

3. Requirements analysis define specific characteristics of the software (i.e.,
the functions it will perform and the interfaces to

Requirements are generally gathered from diverse its environment) in a form that can be more easily
sources, and much analysis (requirements analysis) understood and analyzed than a textual descrip-
is usually needed before the results of requirements tion. A good model:
definition are adequate for the customer to commit * Reduces the amount of complexity that
to proceeding with further software development, must be comprehended at one time.
"Adequate," in this context, means there is per- • Is inexpensive to build and modify
ceived to be an acceptable level of risk regarding compared to the real thing.
technical and cost feasibility and an acceptable level
of risk regarding the completeness, correctness, and * Facilitates the description of complex
lack of ambiguity in the results. aspects of the real thing.

Most requirements methods include the develop-
The principal steps in requirements analysis, which ment of models of some type to portray the results
are frequently iterated until all issues are resolved, of requirements elicitation and to facilitate the re-
are: quirements analysis process. An important moti-

a. Assessment of potential problems vation for building models during requirements
definition is the belief that the model notation-

This is the process step during which require- and computer support tools supporting the nota-
ments are assessed for feasibility and for prob- tion-help the analyst identify potential problems
lems such as ambiguity, incompleteness, and in- early in the requirements definition process.
consistency. Software requirements for em-
bedded software must be verified to ensure they b. Roles for prototyping
are consistent with the system requirements. Prototyping is frequently used to provide early

b. Classification of requirements feedback to customers and end-users and to im-
prove communication of requirements between

Requirements should be classified into priority users and system developers. Many users find it
categories such as mandatory, desirable, and in- difficult to visualize how software will perform in
essential. "Mandatory" means that the software their environment if they have only a non-
will not be acceptable to the customer unless executable description of requirements. A proto-
these requirements are met in an agreed manner.

8 SEI-CM-1 9-1.2

Software Requirements

type can be an effective mechanism to convey a proposed acceptance criteria and the techniques to
sense of how the system will work. Hands-on use be used during the software validation process, such
of a prototype is particularly valuable if a system as execution of a test plan to determine that the crite-
has to be used by a wide variety of users, not all ria have been met [Collofello88a].
of whom have participated in the requirements
definition process. Although a prototype is not a 7. Managing the requirements definition process
substitute for a thorough written specification, it Requirements definition can present a major project
allows representation of the effect of require- management challenge. Nearly all cost and schedule
ments-certain kinds of requirements, at any rate estimating approaches assume that the requirements
-with an immediacy not matched by its more are defined and can be used to estimate roughly the
static counterpart. Of course, not all elements of size of the project. The effort for a requirements
a system can be captured in a piototype at a project is related to the total development man-
reasonable cost. months, and the effort rises in proportion to the

In many situations, users do not understand the number of divergent sources from which require-
required functionality well enough to completely ments information must be gathered and reconciled.
articulate their needs to analysts. A prototype For example, an application that must support five
based on the information obtained during require- different classes of users with significantly different
ments elicitation is often very useful in refining expectations about the capabilities to be provided
the required functionality [Gomaa8l]. Models de- could easily involve a requirements definition proc-
veloped after requirements elicitation can be use- ess that is five times more difficult than the cor-

ful in deciding what functionality to include in responding process for a homogeneous group of

such a prototype. users.

Boehm [Boehm86] describes possible roles of The complexity of requirements definition rises as a
prototyping to minimize development risks due to function of project duration. The longer a project
incomplete requirements. Clapp [Clapp87l de- goes on, the more likely it is that the software envi-scribes the uses of prototypes during requirements ronment, customers, and end-users will change. Adefinition to assess technology risks and to assess large application, whose total development will re-whether a user interface can be developed that quire several people working for a number of years,will allow the designated personnel to operate the will involve a complex requirements definition proc-system effectively. Modeling methods are of lit- ess that does not terminate when design and imple-tie help in determining the requirements for user mentation begin. Requirements changes will be re-interfaces. Development of prototypes of alter- quested throughout the development cycle and must
native user interfaces is usually required to obtain be evaluated for their cost and schedule impact on
meaningful feedback from customers and users. the work already performed or underway.
If the technical feasibility of meeting essential re- It is difficult to identify the optimum effort to devote
quirements is in question, developing prototypes to requirements definition before undertaking soft-
incorporating key algorithms can provide results ware design. Determining this effort involves an
that are not otherwise available, assessment of the risk involved in assuming that the

5. Requirements communication requirements are defined adequately to proceed.
There will be a negative impact on the cost and

Requirements communication is the step in which schedule of subsequent life-cycle phases if all the
results of requ'rements definition are presented to requirements have not been identified or if they have
diverse audiences for review and approval. The fact not been stated with adequate precision.
that users and analysts are frequently expert in their
own areas but inexperienced in each other's domains III. Softwar- Requirements Products
makes effective communication particularly diffi- 1. Results of requirements definition
cult. The result of requirements communication iTfrequently a further iteration through the require- The format in which the results of the requirements
fentl aefue rtion tro ug the ree- definition process should be presented depends upon
ment on a precise statement of requirements the information needs of different audiences. End-

users prefer a presentation that uses an application-

6. Preparation for validation of software oriented vocabulary, while software designers re-
requirements quire more detail and a precise definition of

application-specific terminology. However, require-
During this step, the criteria and techniques are es- ments, no matter how presented, fall into four
tablished for ensuring that the software, when pro- classes (Ross77b]:

* duced, meets the requirements. The customer and
software developers must reach agreement on the * Functional requirements

* Non-functional requirements

SEI-CM-1 9-1.2 9

Software Requirements

* Inverse requirements 2. Standards for requirements documents
* Design and implementation constraints The two most widely referenced standards relevant

a. Functional requirements to producLig requirements documents are
U. S. Department of Defense Standard 2167A,

A functional requirement specifies a function that Military Standard for Defense System Software
a system or system component (i.e., software) Development [DoD88] and IEEE Standard 830, IEEE
must be capable of performing. Guide to Software Requirements Specifications

[IEEE84]. The IEEE standard describes the neces-
Functional requirements can be stated from either sary content and qualities of a good requirements
a static or dynamic perspective. The dynamic document and presents a recommended outline.
perspective describes the behavior of a system or Section 2 of the outline can be considered a template
system component in terms of the results pro- for customer/user-oriented requirements and section
duced by executing the system under specified 3 a template for developer-oriented requirements.
circumstances. Functional requirements stated Even if a company standard for documentation for-
from an external, dynamic perspective are fre- mat is to be used, the IEEE standard provides a good
quently written in terms of externally observable checklist of the items that should be included.
states; for example, the functions capable of being
performed by an automobile cruise control system 3. Customer/user-oriented software requirements
are different when the system is turned on from
when it is disabled. Functional requirements This section describes important characteristics of
stated from a static perspective describe the func- C-requirements products.
tions performed by each entity and the way each a. Objectives
interacts with other entities and the environment.

C-requirements provide to the customer, who
b. Non-functional requirements contracts for the software project and must accept

Non-functional requirements are those relating to the resulting software, a description of the func-
performance, reliability, security, maintainability, tional requirements, non-functional requirements,
availability, accuracy, error-handling, capacity, inverse requirements, and design constraints ade-
ability to be used by specific class of users, an- quate to commit to software development.
ticipated changes to be accommodated, accepta- "Adequate" means there is an acceptable level of /
ble level of training or support, or the like. They risk regarding technical and cost feasibility and an
state characteristics of the system to be achieved acceptable level of risk regarding the complete-
that are not related to functionality. In a real-time ness, correctness, and lack of ambiguity in the
system, performance requirements may be of cri- C-requirements. Acceptance criteria are usually
tical importance, and functional requirements developed in parallel with C-requirements.
may need to be sacrificed in order to achieve min- b. Relative importance of specification
imally acceptable performance. attributes

c. Inverse requirements (what the software shall Rombach describes the desirable attributes of
not do) specification products in general; the relative im-

Inverse requirements describe the constraints on portance of these attributes depends upon the
allowable behavior. In many cases, it is easier to specification product. C-requirements must be
state that certain behavior must never occur than understandable to the customer-and hence by
to state requirements guaranteeing acceptable be- end-users, who typically review the requirements
havior in all circumstances. Software safety and before they are approved by the customer. They
security requirements are frequently stated in this must therefore be written using the application
manner [Leveson86, Leveson87]. vocabulary. Although understandability is the

most important attribute of the C-requirements,
d. Design and implementation constraints there must be adequate precision for complete-

ness, correctness, consistency, and freedom from
Design constraints and implementation con- ambiguity to be evaluated by analysts, users, and
straints are boundary conditions on how the re- customers.
quired software is to be constructed and imple-
mented. They are givens of the development c. Key contents
within which the designer must work. Examples
of design constraints include the fact that the soft- The critical components of C-requirements are
ware must run using a certain database system or
that the software must fit into the memory of a
512Kbyte machine.

10 SEI-CM-1 9-1.2

Software Requirements

(i) Software functionality formation for the purposes of software
development. Acceptance tests are usually devel-

Functionality and overall behavior of the soft- oped in parallel with D-requirements.
ware to be developed must be presented from a
customer/user viewpoint. C-requirements can C-requirements and D-requirements for em-
use a language other than natural English that bedded software are frequently combined into one
allows the use of the application vocabulary. A document that is reviewed by technical represen-
prototype illustrating proposed software func- tatives of the customer who have the expertise to
tionality may accompany C-requirements, but review material whose principal audience is
the conclusions drawn from the evaluation by designers and implementors and who can verify
customers and end-users should be stated ex- the consistency of the C- with the D-
plicitly. requirements. The customer is usually much

more concerned with the C-requirements for the
(ii) Information definition and relationships total system. In cases where the requirements

The information to be processed and stored, risks the customer will accept are very low-in a
and the rela:ionships between different types of software system for airliner flight control, for ex-
information, must be defined. Entity-Relation- ample-a separate verification and validation
ship diagrams [Flavin8l, Shlaer88] are fre- coutractor may be employed by the customer to
quently used for this purpose. verify, independently of the project team, that the

D-requirements are consistent with the system re-
(iii) Critical non-functional requirements quirements and are adequate to allow the team to

(iv) Critical design constraints proceed with software implementation.

(v) Acceptance criteria b. Relative importance of specification

4. Developer-oriented software requirements attributes
D-requirements are usually produced by refining and D-requirements must be usable by designers and
augmenting the C-requirements. As an example, implementors without an in-depth knowledge of

augmntig te Creqiremnts Asan xamlethe application vocabulary and without direct
consider the description of the requirements for a
scientific computation. The C-requirements might contact with customers and end-users. Therefore,
contain the equation to be solved and the numerical many aspects of the requirements must be more
tolerance required, whereas the D-requirements detailed than in the C-requirements, wherein the
would also contain the algorithm for solving the application vocabulary is expected to provide a
equation within the stated tolerance. During design, common foundation of understanding amofig theimplementation of the specific algorithm would be customer and end-users. Application-specific in-
chosent formation is frequently assumed by those who

produce C-requirements, since it is inherent in un-
In many cases, an updated version of the C- derstanding the terminology used. Precision in
requirements is developed during the creation of the the D-requirements is essential, and less use of
D-requirements, as issues are resolved and more in- the application vocabulary--even at the cost of
formatioa is obtained from the castomer, end-users, reduced understandability by application area ex-
and "experts" in the application field. D- perts---is usually required in order to achieve it.
requirements products may exist at various levels of
the software refinements process for the entire sys-
tem, subsystem, or modules. The critical components of D-requirements are

For a highly constrained system, where there is little described below.

requirements elicitation from people, only D- (i) Software functionality
requirements are usually produced. Functionality must be presented from the view-
Important characteristics of D-requirements products point of the software developer and must be
are described below. sufficient in precision and detail for software

a. Objectives design.

D-requirements provide to the developer a de- (ii) Information in C-requirements
scription of the functional requirements, non- No significant information appearing in the C-
functional requirements, inverse requirements, requirements may be omitted in preparing the
and design constraints adequate to design and im- D-requirements.
plement the software. "Adequate" means there is
an acceptable level of risk regarding the com- (iii) Interfaces to hardware/external systems
pleteness, consistency, and correctness of the in- (iv) Critical non-functional requirements

SEI-CM-19-1.2 11

Software Requirements

(v) Critical design constraints ods are intended to be useful in a variety of appli-
(vi) Acceptance criteria and acceptance t cation areas and are referred to here as "system

modeling methods." For example, SADT [Ross85]
IV. Techniques and Tools for Performing Software has been applied to understanding how functions are

Requirements Definition performed manually in an organization and to build-
ing models showing the functions of a combined

The objective of this section is to introduce some of the hardware/software system. However, there is also a
techniques and computer support tools most likely to role for other types of models in requirements defi-
be used during requirements definition, but it is not nition, such as physical models (the layout of an
intended to be a comprehensive description. assembly line to be automated) and simulation

1. Techniques for eliciting requirements from models (the actions proposed to take place on an

people automated assembly line).

Techniques used in a variety of fields for gathering Specification languages that are not graphically
information from people with different opinions oriented have been proposed as an alternative to the
(such as questionnaires and interviews) are relevant graphically-oriented modeling languages widely
to defining software requirements. Davis [Davis83] used during requirements definition. None, how-
and Powers (Powers84] cover most of the relevant ever, has received significant usage for producing
methods. customer/user-oriented requirements and few have

been used by other than their developers to produce
In order to facilitate the elicitation of requirements, a developer-oriented requirements. One exception is
variety of techniques have been developed that in- the NRL/SCR requirements method [Heninger80],
volve the participation of analysts, end-users, and which is not graphically oriented and which has
customers in intensive working sessions over a been applied to major projects.
period of several days. The objective is to speed up
the negotiations between users with divergent Unfortunately, the developers of system modeling

opinions, to provide analysts with an ia-depth under- methods have used inconsistent terminology to de-

standing of software needs, and to complete a draft scribe their modeling approaches. It is usually diffi-

of the most important requirements. The analysts cult to understand what information can be
may develop models or prototypes during these ses- represented easily using the modeling method and to
sions for review with the users. The best known of what class of problems the approach is most ap-
these techniques is Joint Application Development plicable. White [White87] has done a thorough corn-
Technique (JAD), developed by IBM. parison of what can be represented using the most

common model-building techniques. Pressman
Frequent review of the work of analysts by cus- [Pressman8"] surveys the following modeling meth-
tomers and users facilitates agreement on require- ods and tools, which are among those described be-
ments. An incremental process tor reviewing low: Structured Analysis, Real-Time Structured
models and accelerating the convergence of the re- Analysis, Data Structured Systems Development,
quirements elicitation process has been formalized SADT, SREM/DCDS, and PSL/PSA. Davis
in the Reader-Author Cycle of the SADT method- [Davis88] surveys techniques for specifying the ex-
ology [Marca88]. The SADT approach is applicable temal behavior of systems and compares alternative
to any model-building technique. approactes, including two formal specification lan-

Walk-throughs [Freedman82] can be used to help guages.

determine the consistency and completeness of A majority of modeling methods support describing
evolving requirements and to ensure that there is a a system in terms of several of the following charac-
common understanding among analysts, users, and teristics:
customers of the implications of requirements. * Interfaces to external entities. Since any
Yourdon [Yourdon89b] describes how to conduct model can describe only a well-defined
walk-throughs using models built during require- subject area, the model-building notation
ments definition. Technical reviews [Collofello88b] must allow a precise description of what is
can be utilized to assess the status of the require- to be included in the system of interest and
ments definition process. how that system interfaces to external en-

2. Modeling techniques tides. In the case of a software system, the
external entities typically are hardware,

Nearly all requirements definition techniques devel- other software, and people. The ability to
op some type of model to structure the information describe precisely the model interfaces is
gathered during requirements elicitation and to de- particularly important in requirements de-
scribe the functionality and behavior of software to finition, since there may be divergent
meet the requirements. Most of the modeling meth- opinions among customers and users

12 SEI-CM-1 9-1.2

Software Requirements

regarding the scope of the software to be depiction of data transformations and functional
developed in response to the requirements. decomposition. It incorporates the concept of a

* Functions to be performed. All model- context diagram, which shows the external en-

ing methods widely used in requirements tides that provide informadon to the system or

definition support the description of sys- receive information from the system.

tern functions, but they differ in how they Structured Analysis is probably the most widely
describe the conditions under which func- used graphically-oriented requirements definition
tions are performed. For software that technique. It is described in a number of books,
must react to external events (i.e., real- including DeMarco [DeMarco79], Gane and Sar-
time software), one must be able to de- son [Gane79], and McMenamins and Palmer
scribe precisely the events that cause a [McMenamins84]. The emphasis of the method is
function to be performed. primarily on producing customer/user-oriented re-

* Data Transformations. Modeling meth- quirements.
ods that emphasize functions performing
data transformations, such as Structured SADT (Structured Analysis and Design
Analysis, are widely used in requirements Technique) [Ross85, Wallace87, Marca8g] is a su-
definition for business data processing ap- perset of Structured Analysis and was the first
plications. graphically-oriented method developed for use in

* Structure of input/output data. The performing requirements definition. Among its

structure of input and output data is features are the use of interrelated multiple
structe inutantpt defiiti echmodels to represent a system from the viewpoints
modeled in recduirements definition tech- of different participants in the requirements defi-
niques that are designed to deal with com- nition process (Leite88] and the ability to describe
plex information, such as Data Structured the states of data [Marca82]. A subset similar to
Systems Development (the Warnier-Orr Structured Analysis is known by the name IDEF.
methodology) [Orr8l]. Typically, the Also part of the method are procedures for con-
structure of the information is assumed to dicting reviews of evolving models and team-
be hierarchical. Such a model assists the riented techniques for performing analysis and
analyst in understanding what items of in- design. The emphasis of the method is primarily
formation must be generated to produce a on producing customer/user-oriented require-
required report or screen display. ments.

" Relationships among information. If the
requirements indicate the software is to In Real-Time Structured Analysis, a state-
handle a significant number of items of in- diagrammatic representation is used to extend
formation that are associated through corn- Structured Analysis to facilitate the description of
piex relationships, information models can system behavior. Alternative --'tations have been
be used to show graphically the relation- proposed by Hatley (Hatley87] and by Ward and
ships between data ob;-cts. The most Mellor [Ward85]. A consolidation of these two
widely used information modeling tech- notations into a new notation called the Extended
niques [Flavin8l] are Entity-Relationship Systems Modeling Language has been proposed
(E-R) models and logical data models [Bruyn88]. An alternative notation for describing
using the Curtice and Jones notation the states of a real-time system, Statecharts, has
[Curtice82]. been developed by Harel [Hare188a].

" System behavior. To model behavior as a b. DSSD
system reacts to a sequence of externally-
generated events requires representing the DSSD (Data Structured Software Development)
time sequence of inputs. Behavioral (the Wamier-Ross Methodology) [Orr8l] devel-
models are essential to the development of ops software requirements by focusing on the
requirements for real-time systems. structure of input and output data. It assists the

analyst in identifying key information objects and
3. Representative requirements definition methods operations on those objects. The principal appli-

The following four groups of methods are the most cation of this graphically-oriented approach has

frequently us-d in the United States. Each involves been in the area of data processing systems.

the production of a model for requirements represen- c. SREM/DCDS
tation. In Europe, the Jackson System Development
method [Sutcliffe88] is also frequently used. SREM (Software Engineering Requirements

Methodology) [Alford77] was originally developed
a. Structured Analysis and SADT for performing requirements definition for very

This group of methods emphasizes the graphic large embedded systems having stringent perfor-

SEI-CM-19-1.2 13

Software Requirements

mance requirements. With the addition of exten- p,'ototyping on personal computers, widely used
sions to support distributed concurrent systems, tools are Hypercard on the Apple Macintosh and
the name has been changed to the Distributed Dan Bricklin's Demo II Program on the IBM PC.
Computer Design System [Alford85]. The em- Statemate [Hare188b] supports the development on a
phasis of SREM/DCDS is primarily on producing workstation of a combined user interface prototype
developer-oriented requirements. and an essential functionality prototype through the

use of an executable model that describes the func-
d. NRLISCR tionality and behavior of the system

The NRL/SCR (Naval Research Laboratory Soft-
ware Cost Reduction) requirements method
[Heninger8O] is oriented toward embedded sys-
tems and produces developer-oriented require-
ments. It differs from the methods listed above
by being a "black box" requirements method, in
which requirements are stated in terms of input
and output data items and externally visible char-
acteristics of the system state. The method is in-
tended to separate clearly design issues from re-
quirements issues, and it is sufficiently different
in its assumptions from the other methods that it
is worthy of detailed study. The work of Mills
[Mills86] is based on similar assumptions.

4. Computer support tools for model development

Tools for use on personal computers and worksta-
tions to support the most widely used modeling
methods are evolving rapidly, and published infor-
mation on available tools is outdated within a few
months of publication. The best sources of current
information are the exhibiticns associated with
major conferences such as the International Con-
ference on Software Engineering and CASExpo.

a. Method-specific tools

Computer support tools designed for notations
used by specific methods are commercially avail-
able for all the modeling methods listed above
except SREMIDCDS and NRL/SCR. Tools are
also available to support the development of in-
formation models using both the ERA notation
and the Curtice and Jones notation.

b. Non-method-specific tools

Tools that are not specific to the notation of a
particular modeling method fall into two categor-
ies: tools that can be user-customized to represent
the notation, objects, and relationships specific to
a given modeling method; and tools that require a
translation between the notation of the modeling
method and the notation required by the tool.
PSL/PSA (Problem Statement Language/Problem
Statement Analyzer) [Teichroew77], which was
the first widely available computer tool to support
requirements analysis, is in the second category.

5. Computer support tools for prototyping

Available computer tools to support prototyping are
rapidly increasing in capability. For user interface

14 SEI-CM-I 9-1.2

Software Requirements

*Teaching Considerations

Suggested Course Types Because most students have no experience in dealing
with customer and end-user issues, they learn most

The material presented in this module is intended to by producing C-requirenients.
be used in one of three ways: The author's software sy'stem design course uses

1. As background material for teachers pre- IEEE Guide for Software Requirement Specifica-
paring software engineering courses. tions [IEEE84] to define the outline and content of

2. As material for a course containing a the C-requirements document. Techniques for re-

series of lectures on software require- quirements definition must be taught in enough de-

ments. tail for students to apply them. In practice, this
means emphasizing one iechnique for each step of

3. As material for a teacher planniing a soft- the process, even though it u'ould desirable to ex-
ware requirements definition project pose the student to a wide "-ariety of techniques.
course. The author currently teaches the details of

The author is currently using the module material to o Information modeling using the Curtice
teach a course, Software System Design, in the soft- and Jones notation (Curtice82].
ware engineering master's degree program at Boston * Real-Time Structured Analysis [Hatley-
University. Of the 26 lectures, 10 are on system and
software requirements, and 16 are on architectural 87].
design. e Support tools associated with the above.

While on the faculty of the Wang Institute, the au- Since producing models is not the principal objec-
* thor supervised project courses in which teams of tive of requirements definition, emphasis in the

4-5 students performed requirements defirition proj- course and in the instructor's review of the project
ects for external customers [Bracket881. documents must be given to non-functional require-

ments, the handling of unexpected events, and de-
sign constraints.

The following projects have been sed in teaching
Teaching Experience Software System Design:

* The requirements for the first automatic
In the author's experience, it is difficult, if not im- teller machine (assuming the project was
possible, to convey adequately the principal con- conducted in 1977).
cepts in this module without having the students un- o The requirements for the software to
dertake some type of requirements definition project. control 5 elevators in a 50-story building.
Nearly all students, even those with 3-5 years of incor 5selev t in 5 our uilding
dustrial experience, lack any experience in perform- As the major assignment in the course, each has
ing requirements definition. Therefore, survey been adequately done to the C-requirements level by
courses are likely only to intrduce the student to the teams of three to four students in abo our weeks.
need to specify software requirements and to some To continue to the D-requirements level would re-
of the modeling and prototyping techniques fre- quire about an additional four weeks.
quently used.

A requirements definition project requires adequate
calendar time for the student to produce a C. Suggested Reading Lists
requirements document, the teacher to provide de-
tailed feedback on it, and the student to prepare a
second (or third!) iteration. Each iteration should The following lists categorize items in the bibliog-
define the requirements more completely and raphy by applicability.

* precisely, while reducing the number of design solu- Instructor Essential: This is a small set of readings
tions the students identify as requirements. Follow- intended to provide, in conjunction with this module,
ing the completion of C-requirements, D- the basic information an instructor needs to prepare a
requirements should be developed, if time permits, series of lectures on software requirements.

SEI-CM-1 9-1.2 15

Software Requirements

Instructor Recommended: These readings provide *Those readings marked with "*" are suitable for
the instructor with additional material and, if time use by students in a graduate-level course including
permits, should be reviewed in conjunction with the a series of lectures on software requirements.

Instucto Essntia ites. ' Possible textbooks are indicated with "t".
Detailed: These readings have been included to pro- No single book suitable both for an information-
vide access to the literature on specific topics or to ssesoine oreadara-ieoine
matenials that are secondary sources to those listed sytm-etdcourse andnabreal-ime-oriente
under the Instructor Essential or Instructor cus a ercmedd
Recommended categories.

Paper Categories

Instructor Essential Detailed Detailed (cont.)

Davis88 Abbott86 IEEE83
IEEE84* Alford77 KowaII88*t

one of .1Martifl88* Aiford85 Leite87
f Powers84*1 Boehm84b* Leite88

one off Pressman87*t . Boehm86* Leveson86*
ISommerviiie89*i- Brackett88 Leveson87

Bruyn88 Marca82
Coilofe!1o88a Marca88*

Instructor Recommended Coiiofello88b McMenamins84*
Curtice82* Mills86

Boehm84a* Davis82* Orr8l
Brooks87* Davis83*t Periman88
Clapp87M DeMarco79* Ross85
Flavin8l * DoD88 Shlaer88
one of!f Hatley87*t Freedman82 Sutcliffe88

L Ward85*t Gane79* Teichroew77*
Heninger8O Gause89 Wallace87
Rombach9O Gomaa8l *Ward89

Ross77b* Gomaa89* White87
Yourdon89a HareI88a Yourdon89b

HareI88b*

16 SEI-CM-19-1 .2

Software Requirements

Bibliography

Abbott86 Alford85
Abbott, R. J. An Integrated Approach to Sofnvare Alford, M. "SREM at the Age of Eight: The Distri-
Devetopment. New York: John Wiley, 1986. buted Computing Design System." Computer 18, 4

Table of Contents (April 1985), 36-46.
1 Introduction SREM/DCDS has been used primarily on very large

government contracts, but the supporting tools
PART 1: REQUIREMENTS make it unsuitable for use in an academic course.
2 Requirements Discussion They are difficult to learn and somewhat difficult to
3 Requirements Document Outline install.

PART 2: SYSTEM SPECIFICATION Bcehm84a
4 Discussion
5 Behavioral Specification Outline Boehm, B. W. "Verifying and Validating Software
6 Procedures Manual Requirements and Design Specifications." IEEE
7 Administrative Manual Software 1, 1 (Jan. 1984), 75-88.

PART 3: DESIGN An excellent survey article, which is understandable

8 Design Discussion by students.
9 System Design Documentation
10 Component Documentation: Specification and Boehm84b

Design Boehm, B. W., T. E. Gray, and T. Seewaldt.
"Prototyping vs. Specifying: A Multi-Project Exper-

Appendix: Abstraction and Specifica:ion iment." Proc. 7th Intl. Conf. Software Eng. New
References York: IEEE, 1984, 473-484.
Index

Abstract: In this experiment, seven software teams
This is a general software engineering text, organ- developed versions of the same small-size (2000-
ized as a collection of annotated outlines for tech- 4000 source instruction) application software prod-
nical documents important to the development and uct. Four teams used the Specifying approach.
maintenance of software. The outline of Abbott's Three teams used the Prototyping approach.
requirements document differs from [IEEE84], and
the instructor may find it useful to compare the dif- The main results of thi experiment were:
ferences. The process of requirements definition is Prototyping yielded products with roughly
not explained in detail, so this book is not an ade- equivalent performance, but with about 40%
quate stand-alone text for a series of lectures on less code and 45% less effort.
software requirements. The prototyped products rated somewhat

lower on functionality and robustness, but
Alford77 higher on ease of use and ease of learning.
Alford, M. "A Requirements Engineering Method- Specifying produced more coherent designs
ology for Real-Time Processing Requirements." and software that was easier to integrate.
IEEE Trans. Software Eng. SE-3, 1 (Jan. 1977), The paper presents the experimental data support-
60-69. ing these and a number of additional conclusions.

Abstract: This paper describes a methodology for
the generation of software requirements for large, Boehm86
real-time unmanned weapons systems. It describes Boehm, B.W. "A Spiral Model of Software Devel-
what needs to be done, how ;o evaluate the interme- opment and Enhancement." ACM Software Engi-
diate products, and how to use automated aids to neering Notes 11, 4 (Aug. 1986), 14-24.
improve the quality of the product. An example is
provided to illustrate the methodology steps and This paper, reprinted from the proceedings of the
their products and the benefits. The results of some March 1985 International Workshop on the Soft-experimental applications are summarized, ware Process and Software Environments, presentsBoehm's spiral model. The author's description
This paper should be read in conjunction with from the introduction:
[Alford85] and [Davis88].

SEI-CM-1 9-1.2 17

Software Requirements

The spiral model of software development and en- 13-1.1, Software Engineering Institute, Carnegie
hancement presented here provides a new Mellon University, Pittsburgh, Pa., Dec. 1988.
framework for guiding the software process. Its
major distinguishing feature is that it creates a risk- Capsule Description: Software verification and
driven approach to the software process, rather validation techniques are introduced and their ap-
than a strictly specification-driven or prototype- plicability discussed. Approaches to integrating
driven process. It incorporates many of the these techniques into comprehensive verification
strengths of other models, while resolving many of and validation plans are also addressed. This cur-
their difficulties. riculum module provides an overview needed to un-

derstand in-depth curriculum modules in the verifi-
Brackett88 cation and validation area.
Brackett, J. W. "Performing Requirements Analysis
Project Courses for External Customers." In Issues Collofello88b
in Software Engineering Education, R. Fairley and Colofello, J. S. The Software Technical Review
P. Freeman, eds. New York: Springer-Verlag, 1988, Process. Curriculum Module SEI-CM-3-1.5, Soft-
56-63. ware Engineering Institute, Carnegie Mellon Univer-

sity, Pittsburgh, Pa., June 1988.
Brooks, F. "No Silver Bullet: Essence and Accidents Capsule Description: This module consists of acomprehensive examination of the technical reviewof Software Engineering." Computer 20, 4 (April process in the software development and mainte-
1987), 10-19. nance life cycle. Formal review methodologies are

analyzed in detail from the perspective of the review
Bruyn88 participants, project management and software
Bruyn, W., R. Jensen, D. Keskar, and P. T. Ward. quality assurance. Sample review agendas are also
"ESML: An Extended Systems Modeling Language presented for common types of reviews. The objec-
Based on the Data Flow Diagram." ACM Software tive of the module is to provide the student with the
Engineering Notes 13, 1 (Jan. 1988), 58-67. information necessary to plan and execute highly

efficient and cost effective technical reviews.
Abstract: ESML (Extended Systems Modeling
Language) is a new system modeling language Curtlce82
based on the Ward-Mellor and Boeing structured Curtice, R. and P. Jones. Logical Data Base Design.
methods techniques, both of which have proposed New York: Van Nostrand Reinhold, 1982.
certain extensions of the DeMarco data flow
diagram notation to capture control and timing in- This book introduces a data modeling notation that
formation. The combined notation has a broad is easily taught to students and that facilitates
range of mechanisms for describing both com- decomposing a large data model into smaller sub-
binatorial and sequential control logic, models. However, the text is not oriented toward

This paper should be read in conjunction with using data models during requirements definition.
[Ward89]. Davis82

Clapp87 Davis, G. B. "Strategies for Information Require-
Clapp, J. "Rapid Prototyping for Risk Management." ments Determination." IBM Systems J. 21, 1 (1982),

Proc. COMPsAC 87. Washington, D. C.: IEEE 4-30.
Computer Society Press, 1987, 17-22. Abstract: Correct and complete information re-

Abstract: Rapid prototyping is useful for control- quirements are key ingredients in planning or-ganizational information systems and in implement-
ling risks in the development and upgrade of deci- ing information system applications. Yet, there has
sion support systems. These risks derive from un- been relatively little research on information re-
certainty about what the system should do, how its qeen etati on, andh rn areorative
capabilities should be achieved, how much it will quirements determination, and p redre relatively
cost, and how long it will take to complete. This few practical, well-formulated procedures for o-
paper describes uses of rapid prototyping for risk taining complete, correct infornation requirements.
management and summarizes lessons iearned from Methods for obtaining and documenting informa-
mthgemusen. ation requirements are proposed, but they tend to be
their use presented as general solutions rather than alter-

native methods for implementing a chosen strategy
Collofello88a of requirements determination. This paper identi-
Collofello, J. S. Introduction to Software Verifica- fies two major levels of requirements: the organiza-
tion and Validation. Curriculum Module SEI-CM- tional information requirements reflected in a

18 SEI-CM-1 9-1.2

Software Requirements

planned portfolio of applications and the detailed Module N: Forms Design and Report Design
* information requirements to be implemented in a Module 0: Decision Tables and Decision Trees

specific application. The constraints on humans as
information processors are described in order to A text for a first undergraduate course in analysis
explain why "asking" iiser. for information re- and design, based on three case studies. Each of the
quirements may not yield a complete, correct set. case studies is taken through the steps of problem
Various strategies for obtaining information re- definition, feasibility study, analysis, system design,
quirements are explained. Examples are given of detai!ed design. The main emphasis of the book is
methods that fit each strategy. A contingency ap- on analysis rather than design. The book is oriented
proach is then presented for selecting an informa- toward business applications and primarily makes
tion requirements determination strategy. The con- use of Structured Analysis and Structured Design.
tingency approach is erplained both for defining or- The case studies may provide a useful basis for
ganizational information requirements and for de- class discussions.
fining specific, detailed requirements in the devel-
opment of an application. Davis88

Davis, A. "A Comparison of Techniques for the
Davis83 Specification of External System Behavior." Comm.
Davis, W. S. Systems Analysis and Design. Read- ACM 31, 9 (Sept. 1988), 1098-1115.,
ing, Mass.: Addison-Wesley, 1983. This paper compares fiaite state techniques, deci-

Table of Contents sion tables, program design language, Real-Time
I. T71E SYS7"EMDEVELOPMEVTPROCESS Structured Analysis, statecharts, REVS/SREM,
1 Structured Systems Analysis and Design Petr nets, and three languages: SDL (Specification
2 Case A: Problem Definition and Description Language), RLP (Requirements
3 Case A. The Feasibility Study Language Processor), and PAISLey. It is the best
4 Case A: Analysis survey paper in the area of notation and tools sup-
5 Case. i: System Design porting requirements definition, and it includes an
6 Case A: Detailed Design extensive bibliography.
7 Case A: Implementation and Maintenance

II. A SMALL BUSINESS SYSTEM DeMar79
8 Case B: Problem Definition DeMarco, T. Structured Analysis and System
9 Case B: The Feasibility Study Specification. Englewood Cliffs, N. J.: Yourdon10 Case B: Analysis Press, 1979. Also published by Prentice-Hall, 1979.

11 Case B: System Design A very readable book on Structured Analysis and
12 Case B: Detailed Design system specification that covers data flow diagrams,
13 Case B: Implementation and Maintenance data dictionaries, and process specification. How-

HII. AN ON-LINE SYSTEM ever, Structured Analysis has evolved greatly since

14 Case C: Problem Definition 1979, and [Yourdon89a] is a more up-to-date refer-

15 Case C: The Feasibility Study ence.

16 Case C: Analysis
17 Case C: System Design DoD88
18 Case C: Detailed Design DoD. Military Standard for Defense System Soft-
19 Case C: Implementation and Maintenance ware Development. DOD-STD-2167A, U. S. De-

partment of Defense, Washington, D.C., 29 February
IV. THE ANALYST'S TOOLS 1988.
Module A: Inspections and Walkthroughs
Module B: Interviewing Fiavin81
Module C: The Feasibility Study
Module D: Data Flow Diagrams Flavin, M. Fundamental Concepts of Information
Module E: Data Dictionaries Modeling. Englewood Cliffs, N. J.: Yourdon Press,
Module F: System Flowcharts 1981.
Module G: Cost/Benefit Analysis A well-written book that is a good introduction to
Module H: HIPO with Structured English information (data) modeling for the instructor.
Module I: Pseudocode Flavin describes this short work in the preface, part
Module J: Program Logic Flowcharts of which is reproduced here:
Module K: WarnierlOrr Diagrams
Module L: PERT and CPM Information modeling is a modem form of system
Module M: File Design and Space Estimates analysis that identifies the objects, relationships,

and operations composing some real-world system.

SEI-CM-19-1.2 19

Software Requirements

It is used for database design and business system Gomaa8l
analysis and planning. Gomaa, H. and D. B. H. ScotL "Prototyping as a
As an analytical procedure, it is composed of two Tool in the Specification of User Requirements."
major parts: an analytical "front end," and a Proc. 5th Intl. Conf. Software Eng. New York:
representational "back-end." The nalytical front- IEEE, 1981, 333-339.
end is a coherent set of procedures for finding,
identifying, and defining objects; relationships; Abstract: One of the major problems in developing
operations that modify the objects and relation- new computer applications is specifying the user's
ships; and data elements that describe objects and requirements such that the requirements specifica-
relationships. The representational back-end is a tion is correct, comolete, and unambiguous. Al-
set of procedures for mapping the semantic compo- though prototyping is often considered too expen-
nents of the model onto data structures that repre-
sent and describe each component. Information sive, correcting ambiguities and misunderstandings
modeling is a marriage of the art of system analysis at the specification stage is significantly cheaper

with the science of data representation, than correcting a system after it has gone into pro-
duction. This paper describes how a prototype was

This monograph is intended to make the system used to help specify the requirements of a computer
analysis component less artistic and a bit more system to manage and control a semiconductor
scientific, and to lay out a proper conceptual foun- processing facility. The cost of developing and run-
dation fo the construction of an Entity- ning the prototype was less than 10% of the total
Relationship (E-R) model of some real-world sys software development cost.
temn.

This is an excellent case study that is suitable for
Freedman82 study by students.
Freedman, D. P., and G. M. Weinberg. Handbook of
Walkthroughs, Inspections,, and Technical Reviews: Gomaa89
Evaluating Programs, Projects, and Products, 3rd Gomaa, H. Software Design Methods for Real-Time
Ed. Boston: Little, Brown, 1982. Systems. Curriculum Module SEI-CM-22-1.0, Soft-

This book is a secondary source to [Yourdon89b]. ware Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, Pa., Dec. 1989.

Gane79 Capsule Description: This module describes the
Gane, C., and T. Sarson. St-uctured Systems Anal- concepts and methods used in the software design of
ysis: Tools and Techniques. Englewood Cliffs, real-time systems. It outlines the characteristics of

N. J.: Prentice-Hall, 1979. real-time systems, describes the role of software de-
sign in real-time system development, surveys and

One of the more widely used books on Structured compares Yome software design methods for real-
Analysis. The book discusses some of the problems time systems, and outlines techniques for the verifi-
in analysis, reviews graphical tools, and shows how cation and validation of real-time designs. For
the graphical tools fit together to make a logical each design method treated, its emphasis, concepts
model. Although this book is very readable, Struc- on which it is based, steps used in its application,
tured Analysis has evolved greatly since 1979, and and an assessment of the method are provided.
[Yourdon89a] is a more up-to-date reference.

Hare188a
Gause89 Harel, D. "On Visual Formalisms." Comm. ACM 31,
Gause, D. C., and G. M. Weinberg. Exploring Re- 5 (May 1988), 514-530.
quirements: Quality Before Design. New York: An elegant and clearly written paper which dis-
Dorset House, 1989. cusses a number of important issues about model

From the publisher: representation. While the first part of the paper is

The authors focus on three critical but neglected concerned with general issues, the latter part pro-

human aspects of the requirements process: devel- vides an interesting exposition of statecharts, and
oping a consistent understanding of requirements includes a detailed example in the form of a de-
among all participants, encouraging the desire to scription of a digital watch. The paper will be of
work as a team on the project, and creating the particular interest to instructors concerned with the
necessary skills and tools for working effectively imprecision of the graphic notations frequently used
as a team to define requirements. Topics include to describe software requirements. It should be read
ambiguity and ambiguity metrics; techniques for in conjunction with [Ward89] and [Davis88].
generating ideas; right-brain methods; choosing
project names; conflict resolution; attributes, func-
tions, and constraints; expectations; reaching
agreements; and user satisfaction tests.

20 SEI-CM-1 9-1.2

Software Requirements

Hare188b 16 Managing the Dictionary
Harel, D., et al. "STATEMATE: A Working Envi-w ronment for the Development of Complex Reactive PARTIV: THE ACHITECTURE MODEL

Systems." Proc. 10th Intl. Conf. on Softvare Eng. 17 Overview

Washington, D. C.: IEEE Computer Society Press, 19 Architecture Dictionary and Module Specfica-

1988, 396-406. tions

Abstract: This paper provides a brief overview of 20 Completing the Architecture Model
the STATEMATE system, constructed over the past
three years by i-Logix Inc., and Ad Cad Ltd. PART V: BUILDING THE ARCHITECTURE
STATEMATE is a graphical working environment, MODEL
intended for the specification, analysis, design and 21 Overview
documentation of large and complex reactive sys- 22 Enhancing the Requirements Model
tems, such as real-time embedded systems, control 23 Creating the System Architecture Model
and communication systems, and interactive soft- 24 Creating the Hardware and Software Architec-
ware. It enables a user to prepare, analyze and ture Models
debug diagrammatic, yet precise, descriptions of the 25 Architecture Development Summary
system under development from three inter-related
points of view, capturing structure, functionality PART VI: EXAMPLES
and behavior. These views are represented by three 26 Automobile Management System
graphical languages, the most intricate of which is 27 Home Heating System
the language of statecharts used to depict reactive 28 Vending Machine
behavior over time. In addition to the use of
statecharts,, the main novelty of STATEMATE is in Appendix A: Standard Symbols and Definitions
the fact that it 'understands' the entire descriptions Appendix B: Making the Models into Documents
perfectly, to the point of being able to analyze them Appendix C: Information Modeling-The Third Per-
for crucial dynamic properties, to carry out rigor- spective
ous animated executions and simulations of the de- This is a well-written text on Real-Time Structured
scribed system, and to create runing code automat- Analysis. This book should be read in conjunction
ically. These features are invaluable when it comes with [Ward89] in order better to understand the ca-
to the quality and reliability of the final outcome. pabilities of the notation. This text and [Ward85]

are alternative texts; the choice of a text for teach-
Hatley87 ing Real-Time Structured Analysis may depend
Hatley, D. J., and I. A. Pirbhai. Strategies for Real- upon whether the computer tools to be used support
Time System Specification. New York: Dorset only the Hatley notation or only the Ward notation.
House, 1987.

Table of Contents Heninger80
PARTI: THE OVERALL STRATEGY Heninger, K. L. "Specifying Software Requirements
1 Overview for Complex Systems: New Techniques and Their
2 The Role of the Methods Applications." IEEE Trans. Software Eng. SE-6, 1

(Jan. 1980), 2-13.
PARTI: THE REQUIREMENTS MODEL Abstract: This paper concerns new techniques for
4 The Process Model making requirements specifications precise, con-
4 The Control Model cise, unambiguous, and easy to check for complete-6 Finite State Machines ness and consistency. The techniques are well-
7 Fiin Reuies suited for complex real-time software systems; they8 Timing R cquirements were developed to document the requirements of ex-
8 Requirements Dictionary isting flight software for the Navy's A-7 aircraft.
9 Requirements Model Interpretation and Sum- The paper outlines the information that belongs in a

mary requirements document and discusses the objectives

PART III: BUILDING THE REQUIREMENTS behind the techniques. Each technique is described

MODEL and illustrated with examples from the A-7 docu-

10 Overview ment. The purpose of the paper is to introduce the

11 Getting Started A-7 document as a model of a disciplined approach

12 Developing the Model's Structure to requirements specification; the document is

13 Preparing Process Specifications available to anyone who wishes to see a fully

14 Preparing Control Specifications worked out example of the approach.

15 Defining Timing This paper shJws how software requirements can be

SEI-CM-1 9-1.2 21

Software Requirements

defined using a description of external system be- the 50-page car rental system example, will be of
havior. The technique is part of the requirements interest to the instructor even if the book is not used
and design methodology developed at the Naval Re- as a text.
search Laboratory by Parnas, Clements and Weiss
[Gomaa89]. The approach should be reviewed by Leite87
the instructor, since it does not use a graphic model Leite, J. A Survey on Requirements Analysis. RTP
of system functionality; it is based upon different 071, University of California, Irvinc, June 1987.
assumptions about how to best describe software
requirements. This report contains an excellent annotated bibliog-

raphy.
IEEE83
IEEE. IEEE Standard Glossary of Software Engi- Leite88
neering Terminology. New York: IEEE, 1983. Leite, J. Viewpoint Resolution in Requirements
ANSI/IEEE Std 729-1983. Elicitation. Ph.D. Th., University of California, Ir-

This standard provides definitions for many of the vine, 1988. Available from University Microfilms
terms used in software engineering. International, Ann Arbor, Michigan.

A valuable thesis to anyone working seriously in
IEEE84 developing requirements definition methods.
IEEE. IEEE Guide to Software Requirements
Specifications. New York: IEEE, 1984. Leveson86
ANSI/IEEE Std 830-1984. Leveson, N. G. "Software Safety: Why, What, and
An excellent description of the contents of a soft- How." ACM Computing Surveys 18, 2 (June 1986),

ware requirements document. 125-163.

Software safety requirements analysis is described
KowaI188 in detail here. This survey contains a very long
Kowall, J. Analyzing Systems. Englewood Cliffs, bibliography at the end to aid in finding further in-
N. J.: Prentice-Hall, 1988. formation.

Table of Contents Leveson87
PART I: PHYSICAL SPECIFICATIONS LevesonNe
1 Introduction Leveson, N. 0. Software Safety. Curriculum Mod-
2 Data Flow Diagrams ule SEI-CM-6-1.0, Software Engineering Institute,
3 Data Dictionary Carnegie Mellon University, Pittsburgh, Pa., April
4 Mini-Specifications 1987.
5 Physical Models Capsule Description: Software safety involves en-

PART H: LOGICAL SPECIFICATIONS suring that softw :are will execute within a system
6 Logical Ana.ysis context without resulting in unacceptable risk.
7 Object Analysis Building safety-critical software requires special
8 Event Analysis procedures to be used in all phases of the software
8 Evengialysis development process. This module introduces the
9 Logical Models problems involved in building such software along

PART 111: REAL-TIME MODELS AND SYSTEM with the procedures that can be used to enhance theP ARCHITECTURE safety of the resulting software product.

10 Real-Time Systems Specifications
11 Convenient Auto Rental System Marea82
12 Systems Architecture Marca, D. A., and C. L. McGowan. "Static and

Dynamic Data Modeling for Information System
Glossary Design." Proc. 6th Intl. Conf. on Software Eng.
References New York: IEEE, 1982, 137-146.
Index

This paper shows how Entity-Relationship models
This well-written book is a potential text for a and SADT data models can both be used during
course in which a substantial amount of time is requirements definition.
devoted to requirements analysis. It includes Struc-
tured Analysis, including an introduction to the real-
time extensions, and information modeling. Thechapters on event analysis and object analysis, plus

22 SEI-CM-1 9-1.2

Software Requirements

Marca88 Structured Analysis. Orr's work is worthy of study
Marca, D. A., and C. L. McGowan. SADT: Struc- by the instructor, since it enjoys significant indus-
tured Analysis and Design Technique. New York: trial usage.
McGraw-Hill, 1988.

Perlman88
A detailed description of SADT, the predecessor to Perlman, G. User Interface Development. Curricu-
Structured Analysis. The book makes use of a gen- lum Module SEI-CM-17-1.0, Software Engineering
erous supply of illustrations and examples, as well Institute, Carnegie Mellon University, Pittsburgh,
as providing a number of case studies taken from Pa. , ril 1988.
different application domains. The i,1rge-size for- Pa., April 1988.
mat used for the book makes the examples partic- Capsule Description. This module covers the is-
ularly clear and readable. sues, information sources, and methods used in the

The level of detail provided makes this particularly design, implementation, and evaluation of user
suitable for use as a source of material for the in- interfaces, the parts of software systems designed to
structor. It should be read in conjunction with interact with people. User interface design draws
[Ross85]. on the experiences of designers, current trends in

inputloutput technology, cognitive psychology,

Martln88 human factors (ergonomics) research, guidelines
and standards, and on the feedback from evaluating

Martin, C. User-Centered Requirements Analysis. working systems. User interface implementation
Englewood Cliffs, N.J.: Prentice-Hall, 1988. applies modern softiwate development techniques to

A well-written book emphasizing the process of re- building user interfaces User interface evaluation

quirements definition for information systems, for can be based on empirical evaluaton of working
whic a a . rit of equremnts re atheed romsystems or on the predictive evaluation of system

which a majority of requireaents are gathered from
people. The chapters on performance requirements design specifications.
and on "objectives analysis," which covers the con-
text analysis process, are of particular interest. Powers84

Powers, M., D. Adams, and H. Mills. Computer In-
McMenamins84 formation Systems Development: Analysis and
McMenamins, S. M, and J. F. Palmer. Essential Sys- Design. Cincinnati: South-Western, 1984.
tems Analysis. New York: Yourdon Press, 1984. Table of Contents

One of the best books on the process of performing 1 T OVERVIEW
requirements definition using Structured Analysis. 2 The Systems Development Life Cycle

Mills86 II. THE, INVESTIGATION PHASE
Mills, H. D., C. Linger, and A. R. Hevner. 3 Initial Investigation
Principles of Information Systems Analysis and 4 Information Gathering
Design. Orlando, Fla.: Academic Press, 1986. 5 Feasibility Study

6 The Process and Products of Analysis
This book describes an approach to requirements 7 Cost/Benefit Analysis
definition for information systems that emphasizes 8 Communication
the use of models showing external system be-
havior. Black-box and state-machine models are IlL. ANALYSIS AND GENERAL DESIGN PHASE
used; these are similar in concept to the form of 9 Existing System Review
representation described in [Heninger8o. 10 System Modeling Tools

11 New System Requirements
Orr8l 12 Output Design
Orr, K. Structured Requirements Definition. 13 Input Design
Topeka, Kan.: Ken Orr and Associates, 1981. 14 Logical Data Analysis

Available from Optima, Inc., Schaumburg, I. 16 File Design

This book describes a methodology and notation for 17 Control and Reliability Design
performing requirements definition for information 18 Implementation and Installation Planning
systems. The technique is a data-structured ap-
proach that focuses on the data that the system will IV. IMPLEMENTATION, INSTALLATION, AND RP
transform into information. The approach is con- VIEW PHASES
siderably different in its strategic approach from 29 Detailed Design and Implementation Phase

20 Installation

SEI-CM-19-1 .2 23

Software Requirements

21 Review describes how products of some type should look or
22 Project Management how processes of some type should be performed.

The framework includes:
Appendix A: Systems Analysis Project 9 A reference software life-cycle model and
Appendix B: A Case Scenario terminology
Glossary * A characterization scheme for software
Indexproduct and process specifications

A possible text for teaching requirements definition - Guidelines for using the characterization
for information systems to undergraduates. The scheme to identify clearly certain life-cycle
section "The Investigation Phase" covers require- phases
ments identification and requirements analysis in for using the characterizationdetail. • ~~~~~Guidelines fruigtecaatrzto
detail, -scheme to select and evaluate specification

Pressman87 techniques

Pressman, R. S. Software Engineering: A Practi- Ross77a
tioner's Approach, 2nd Ed. New York: McGraw- Special Collection on Requirements Analysis. Ross,
Hill, 1987. D. T., ed. IEEE Trans. Software Eng. SE-3, 1 (Jan.

Table of Contents 1977).
1 Software and Sojtware Engineering This special journal issue contains [Ross77b],
2 Computer System Engineering [Teichroew77], and [Aford77], plus other papers on
3 Software Project Planning reiroe n d method
4 Requirements Analysis Fundamentals requirements methods.
5 Requirements Analysis Methods
6 Software Design Fundamentals Ross77b
7 Data Flow-Oriented Design Ross, D. T., and K. E. Schoman, Jr. "Structured
8 Data Structure-Oriented Design Analysis for Requirements Definition." IEEE Trans.
9 Object-Oriented Design Software Eng. SE-3, 1 (Jan. 1977), 6-15.
10 Real-Time Design
11 Programming Languages and Coding Abstract: Requirements definition encompasses all
12 Software Quality Assurance aspects of system development prior to actual sys-
13 Software Testing Techniques tern design. We see the lack of an adequate ap-
14 Software Testing Strategies proach to requirements definition as the source of
15 Software Maintenance and Configuration Man- major difficulties in current systems work. This

agement paper examines the needs for requirements defini-
tion, and proposes meeting those objectives with

Epilogue three interrelated subjects: context analysis, func-
Index tional specification, and design constraints. Re-

quirements definition replaces the widely used, but
A suitable text for a graduate-level course in soft- never well-defined, term "requirements analysis."
ware engineering. The purpose of this paper is to present, in a com-

Rombach90 prehensive manner, concepts that apply throughout
requirements definition (and, by implication, to all

Rombach, H. D. Software Specification: A of system development). The paper discusses the
Framework. Curriculum Module SEI-CM- 11-2.1, functional arch'tecture of systems, the characteris-
Software Engineering Institute, Carnegie Mellon tics of good requirements documentation, the per-
University, Pittsburgh, Pa., Jan. 1990. sonnel involved in the process of analysis, and man-

agement guidelines that are effective even in corn-
Capsule Description: This curriculum module plex environments.
presents a framework for understanding software
product and process specifications. An unusual ap- The paper then outlines a systematic methodology
proach has been chosen in order to address all ay- :hat incorporates, in both notation and technique,
pects related to "specification" without confusing the concepts previously introduced. Reference is
the many existing uses of the term. In this module, made to actual requirements definition experience
the term specification refers to any plan (or and to practicable automated support tools that
standard) according to which products of some type may be used with the methodology.
are constructed or processes of some type are per- This paper was the first publication on SADT
formed, not to the products or processes themselves. [Marca88, Ross85], but its principal value is its de- 0
In this sense, a specification is itself a product that scription of the requirements definition process,

24 SEI-CM-1 9-1.2

Software Requirements

Ross85 communicating processes, is transformed
O Ross, D. T. "Applications and Extensions of into a sequential design by the technique

r18, 4 (April 1985), 25-34. of scheduling. This is followed by fur-
SADT." Computer ther detailed design and coding.

JSD begins by analysing the major system struc-
Rzepka85 tures which are important to create a model of the
Special Issue on Requirements Engineering Environ- system problem, the entities. Then these structures

ments. W. Rzcpka and Y. Ohno, eds. Computer 18, are connected together to create a network model
4 (Ari19 . of the system, while at the same time the design is

(l 1985). elaborated by addition of other processes to create

This journal issue contains [Ross85] and [Alford85], output, and to handle input messages and user in-

plus other papers on requirements methods for real- teraction. The essence . .. is to create a system

time applications, model of reality first and then to add the function-
ality.

ShIaer88 JSD is usually not considered to support require-
ments definition, but Jackson's emphasis on model-

Shlaer, S., and S. J. Mellor. Object-Oriented Systems ing the problem domain makes it a viable alter-
Analysis: Modeling the World in Data. Englewood native, for information systems, to functional, top-
Cliffs, N. J.: Yourdon Press, 1988. down approaches such as Structured Analysis. This

book is unique in showing how JSD relates to more
Sommerviile89 widely used software requirements and design tech-
Sommerville, I. Software Engineering, 3rd Ed. niques. [Ward89] also shows how its notatien re-

Wokingham, England: Addison-Wesley, 1989. lates to more widely used requirements notations.

This latest edition of Sommerville's text expands Telchroew77
upon the excellent chapter on requirements defini- Teichrow, D., and E. A. Hershey, III. "PSL/PSA: A
tion in the 2nd edition. Topics include system Computer-Aided Technique for Structured Docu-
(including data) modeling, non-functional require- mentation and Analysis of Information Processing
ments definition, and requirements validation. Systems." IEEE Trans. Software Eng. SE-3, 1 (Jan.

SSutcliffe 1977), 41-48.

Sutcliffe, A. Jackson System Development. New Abstract: PSL/PSA is a computer-aided structured
York: Prentice-Hall, 1988. documentation and analysis technique that was de-

veloped for, and is being used for, analysis and doc-
From the introductory chapter- umentation of requirements and preparation of

[Jackson System Development (JSD)] is organized functional specifications for information processing
in three separate stages which guide the analyst systems. The present status of requirements defini-
through the systems development process. Each tion is outlined as the basis for describing the prob-
stage has a set of activities with clear start and end lem which PSLIPSA is intended to solve. The basic
points (this helps the analyst using the method) and concepts of the Problem Statement Language are
facilitates project control as deliverables can be introduced and the content and use of a number of
defined for each stage. The three stages can be standard reports that can be produced by the Prob-
outlined briefly as follows. lem Statement Analyzer are briefly described.

(a) Modelling stage. A description is made
of the real world problem and the impor- The experience to date indicates that computer-
tant actions within the system are idenu- aided methods can be used to aid system develop-
fled. This is followed by analysis of the ment during the requirements definition stage and
major structures within the system, called that the main factors holding back such use are not
entities in JSD.... so much related to the particular characteristics

(b) Network stage. The system is developed and capabilities of PSLIPSA as they are to or-
as a series of subsystems. First the major ganizational considerations involved in any change
structures are taken from the modelling in methodology and procedure,
stage and input and outputs are added;
this is followed by the analysis of the PSL/PSA was the first widely used computer tool to
output subsystem which provides infor- support requirements definition. Although its use is
mation, and then of the input subsystem declining, its objectives are relevant to the design of
which handles the user interface and vali- newer CASE tools.
dation....

(c) Inplementation stage. In this stage the Wallace87
logical system specification, which is Wallace, R., R. Stockenburg, and R. Charette. A
viewed as a network of concurrently Unified Methodology for Developing Systems. New

York: McGraw-Hill, 1987.
SEI-CM-1 9-1.2 25

Software Requirements

This book combines SADT with the Parnas/NRL tools, graphics-based software modeling languages
design methodology (Gomaa89]. have the potential to play a much more central role

in the development process. Although some com-
Ward85 parisons among these languages have been made,

no systematic classification based on the underlying
Ward, P. T., and S. J. Mellor. Structured Develop- abstractions has been attempted. As a contribution
ment for Real-Time Systems. New York: Yourdon to such a classification, a class of languages desig-
Press, 1985-1986. nated Embedded Behavior Pattern (EBP) languages

Table of Contents is described and its members are compared and
contrasted. The EBP languages include the

Volume 1 Ward/Mellor and Boeing/Hatley Structured Analy-
SECTION1. INTRODUCTION sis extensions, the Jackson System Development
1 Historical Perspective notation, and Harel's StateChart-Activity Chart
2 Characterization of Real-Time Systems notation. These notations are relevant to the build-
3 Real-TimeModeling Issues ing of specification models because they display
4 Modeling Heuristics clear one-to-one correspondences between elements

5 The Modeling Process of the model and elements of the application
domain. These notations are also amenable to a

SECTION 2: TOOLS style of model partitioning that is related to object-
6 Modeling Transformations oriented development.
7 Specifying Control Transformations This paper is a detailed comparison of the notations
8 Specifying Data Transformations described in [HareI88a], [Hatley87], and [Ward85].
9 Executing the Transformation Schema It will be particularly useful to instructors selecting
10 Modeling Stored Data real-time-oriented CASE tools to support require-
11 Specifying Data ments definition.
12 Organizing the Model
13 Integrating the Model Components White87

Index White, S. A Pragmatic Formal Method for Comput-
er System Definition. Ph.D. Th., Polytechnic Insti-

Volume 2 tute of New York, Brooklyn, N. Y., June 1987.
1 Essential Modeling Heuristics Available from University Microfilms International,
2 Defining System Context Ann Arbor, Michigan.
3 Modeling External Events
4 Deriving the Behavioral Model This thesis compares in more detail than any other
5 Completing the Essential Model-The Upper publication the representational capabilities of sev-

Levels eral real-time requirements and design methods, in-
6 Completing the Essential Model-The Lower cluding those described in [Alford85], [Ross85],

Levels [Heninger8O], [Ward85], and [Hare188a]. White pro-
7 Essential Model Traceability poses a method that is claimed to combine the best

characteristics of each of the evaluated methods.
Appendix A: Cruise Control System This thesis is recommended reading for researchers
Appendix B: Bottle-Filling System in requirements definition methods and anyone do-
Appendix C: SILLY (Science and Industry Little ing an in-depth comparison of real-time methods.

Logic Yzer)
Appendix D: Defect Inspection System Yjurdon89a

The three volumes in this series are Introduction Yourdon, E. Modern Structured Analysis.
and Tools, Essential Modeling Techniques, and Englewood Cliffs, N. J.: Yourdon Press, 1989.
Implementation Modeling Techniques. The firsttwo volumes are applicable to software require- Probably the most comprehensive and up-to-date
ments. Volume 3 covers software design., book on the popular Structured Analysis method.Includes material on the real-time extensions to

Structured Analysis and Entity-Relationship model-
Ward89 ing. There are also two detailed case studies. If
Ward, P. T. "Embedded Behavior Pattern Lan- you need one book on Structured Analysis, this is
guages: A Contribution to a Taxonomy of CASE probably the one to get.
Languages." J. Syst. and Software 9, 2 (Feb. 1989),
109-128.

Abstract: With the increasing availability of CASE

26 SEI-CM-1 9-1.2

Software Requirements

Yourdon89b
Yourdon, E. Structured Walkthroughs, 4th Ed.. Englewood Cuffs, N. J.: Yourdon Press, 1985.
Also published by Prentice-Hall, 1989.

This book is the most comprehensive available on
walkthroughs. The appendix "Guidelines for Anal-
ysis Walkthroughs" is particularly relevant.

SEI-CM-19-1.2 27

UNLIMITED, UNCLASSIFIED
SIECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
REPORT SECURITY CLASSIFICATION 11i. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2b OECLASSIFICATION/ O

OWNGRA
O

ING SCHEDULE DISTRIBUTION UNLIMITED
N/A

A PEqFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

SEI-CM-19-1.2

6. NAME OF PERFORMING ORGANIZATION I36 OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION
(If applicabie)

SOFTWARE ENGINEERING INST. SEI SEI JOINT PROGRAM OFFICE

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

CARNEGIE MELLON UNIVERSITY ESD/AVS
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE

.... _ _ _ _HANSCQM' MA Q1711
Sa. NAME OF FUNOING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT :NSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (1 applicable)

SEI JOINT PROGRAM OFFICE ESD/ AVS F1962890C0003

8c. ADDRESS (City, State and ZIP Code) 10 SOURCE OF FUNDING NOS.
CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
PITTSBURGH, PA 15213 ELEMENT NO. NO. NO. NO.

11. TITLE (itctude Security Cleiticaoton) 6 752F N/A N/A N/A
Software Requirements
PERSONAL AUTHOR(S)

John W. Brackett, Boston University
13 TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT

FTNATI FROM _ TO _ January 1990 27
14. SUPPLEMENTARY NOTATION

17. COSATI CODES IS. SUBJECT TERMS (Contnue on reverse i/ necessary end Identify by block numberl
FIELD GROUP SUB. GR. requirements requirements identification

requirements analysis

19. ABSTRACT (Contlnue on reverse of necessary and den tify by block number)

This curriculum module is concerned with the definition of software requirements--the
software engineering process of determining what is to be produced--and the products
generated in that definition. The process involves all of the following: requirements
identification; requirements analysis; requirements representation; requirements
communication; and development of acceptance criteria and procedures. The outcome of
requirements definition is a precursor of software design.

OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEDUNLMITEO k3 SAME AS RPT. 0- OTIC USERS UNCLASSIFIED, UNLIMITED DISTRIBUTION
22,& NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c OFFICE SYMBOL

JOHN S. HERMAN, Capt, USAF (Include Area Code)

412 268-7630 SEI JPO
DD FORM 1473 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. ,tt7.TMTITmVn IWJtrtT ACrT1 ,

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.. The SEI Software Engineering Curriculum Project is developing a wide range of materials to support software engineering
education. A curriculum module (CM) identifies and outlines the content of a specific topic area, and is intended to be
used by an instructor in designing a course. A support materials package (SM) contains materials related to a module
that may be helpful in teaching a course. An educational materials package (EM) contains other materials not necessarily
related to a curriculum module. Other publications include software engineering curriculum recommendations and course
designs.

SEI 3ducational rr,.i!erials are being made available to educators throughout the academic, industrial, and government
conmunities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

Permission to make copies or derivative works of SEI curriculum modules, support materials, and educational materials is
granted, without fee, provided that the copies and derivative works are not made or distributed for direct commercial
advantage, and that all copies and derivative works cite the original document by name, author's name, and document
number and give notice that the copying is by permission of Carnegie Mellon University.

Comments on SEI educational materials and requests for additional information should be addressed to the Software
Engineering Currirulum Pr,.Ject, Sotware Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
15213. Electronic mail can be sent 'o educafion@sei.cmu.edu on the Internet.

Curriculum Modules (* Support Materials available) Educational Materials

CM-1 (superseded by CM-191 EM-i Software Maintenance Exercises for a Software
CM-2 Introduction to Softwarg Design Engineering Project Course
CM-3 The Software Technica, Review Process' EM-2 APSE Interactive Monitor: An Artifact for Software
CM-4 Software Configuration Management* Engineering Education

CM-5 Information Protection EM-3 Reading Computer Programs: Instructor's Guide and. CM-6 Software Safety Exercises

CM-7 Assurance of Software Quality
CM-8 Formal Specification of Software*
CM-9 Unit Testing and Analysis
CM-10 Models of Software Evolution: Ufe Cycle and Process
CM-I I Software Specifications: A Framework
CM-12 Software Metrics
CM-13 Introduction to Software Verification and Validation
CM-14 Intellectual Property Protection for Software
CM-15 Software Development and Licensing Contracts
CM-16 Software Development Using VDM
CM-17 User Interface Development!
CM-18 [superseded by CM-231
CM-19 Software Requirements
CM-20 Formal Verification of Programs
CM-21 Software Project Management
CM-22 Software Design Methods for Real-Time Systems*
CM-23 Technical Writing for Software Engineers
CM-24 Concepts of Concurrent Programming
CM-25 Language and System Support for Concurrent

Programming'
CM-26 Understanding Program Dependencies

